MinimizeMixedEffectsConverter#
- class skfda.representation.conversion.MinimizeMixedEffectsConverter(basis)[source]#
Mixed effects to-basis-converter using
scipy.optimize.minimize.Minimizes the profile loglikelihood of the mixed effects model as proposed by Lindstrom and Bates[1].
Methods
fit(X[, y, initial_params, ...])Fit the model.
fit_transform(X[, y])Fit to data, then transform it.
set_output(*[, transform])Set output container.
transform(X)Transform X to FDataBasis using the fitted converter.
- Parameters:
basis (Basis)
- fit(X, y=None, *, initial_params=None, minimization_method=None, has_mean=True)[source]#
Fit the model.
- Parameters:
X (FDataIrregular) – irregular data to fit.
y (object) – ignored.
initial_params (Params | ndarray[tuple[int, ...], dtype[floating[Any]]] | None) – initial params of the model.
minimization_method (str | None) –
scipy.optimize.minimizemethod to be used for the minimization of the loglikelihood of the model.has_mean (bool) – Whether the mean is a fixed parameter to be optimized or estimated with ML estimator from the covariance parameters.
- Returns:
self after fit
- Return type:
- fit_transform(X, y=None, **fit_params)[source]#
Fit to data, then transform it.
Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.
- Parameters:
X (array-like of shape (n_samples, n_features)) – Input samples.
y (array-like of shape (n_samples,) or (n_samples, n_outputs), default=None) – Target values (None for unsupervised transformations).
**fit_params (dict) – Additional fit parameters.
- Returns:
X_new – Transformed array.
- Return type:
ndarray array of shape (n_samples, n_features_new)
- set_output(*, transform=None)#
Set output container.
See Introducing the set_output API for an example on how to use the API.
- Parameters:
transform ({"default", "pandas", "polars"}, default=None) –
Configure output of transform and fit_transform.
”default”: Default output format of a transformer
”pandas”: DataFrame output
”polars”: Polars output
None: Transform configuration is unchanged
Added in version 1.4: “polars” option was added.
- Returns:
self – Estimator instance.
- Return type:
estimator instance
- transform(X)[source]#
Transform X to FDataBasis using the fitted converter.
- Parameters:
X (FDataIrregular)
- Return type: