Skip to main content
Ctrl+K
scikit-fda 0.10.2.dev0 documentation - Home scikit-fda 0.10.2.dev0 documentation - Home
  • Tutorial
  • Examples
  • API Reference
  • Citing scikit-fda
  • Glossary
    • Contributors ✨
  • GitHub
  • PyPI
  • Anaconda
  • Tutorial
  • Examples
  • API Reference
  • Citing scikit-fda
  • Glossary
  • Contributors ✨
  • GitHub
  • PyPI
  • Anaconda

Section Navigation

Modules:

  • Representation of functional Data
    • FDataGrid
    • SplineInterpolation
    • FDataBasis
    • BSplineBasis
    • FourierBasis
    • MonomialBasis
    • ConstantBasis
    • CustomBasis
    • TensorBasis
    • FiniteElementBasis
    • VectorValuedBasis
    • Basis
    • FDataIrregular
    • FData
    • Extrapolation
      • BoundaryExtrapolation
      • ExceptionExtrapolation
      • FillExtrapolation
      • PeriodicExtrapolation
      • Evaluator
    • Conversion between representations
      • Mixed effects converters
        • MinimizeMixedEffectsConverter
        • EMMixedEffectsConverter
    • BSpline
    • Fourier
    • Monomial
    • Constant
    • Tensor
    • FiniteElement
    • VectorValued
  • Preprocessing
    • Missing data
      • MissingValuesInterpolation
    • Smoothing
      • KernelSmoother
      • BasisSmoother
      • LinearSmootherLeaveOneOutScorer
      • LinearSmootherGeneralizedCVScorer
      • akaike_information_criterion
      • finite_prediction_error
      • shibata
      • rice
      • SmoothingParameterSearch
    • Registration
      • LeastSquaresShiftRegistration
      • landmark_shift_registration
      • landmark_shift_deltas
      • landmark_elastic_registration
      • landmark_elastic_registration_warping
      • FisherRaoElasticRegistration
      • AmplitudePhaseDecomposition
      • LeastSquares
      • SobolevLeastSquares
      • PairwiseCorrelation
      • invert_warping
      • normalize_warping
    • Dimensionality Reduction
      • MaximaHunting
      • RecursiveMaximaHunting
      • RKHSVariableSelection
      • MinimumRedundancyMaximumRelevance
      • Recursive Maxima Hunting
        • Correction
        • ConditionalMeanCorrection
        • UniformCorrection
        • GaussianCorrection
        • GaussianConditionedCorrection
        • GaussianSampleCorrection
        • DependenceThresholdRedundancy
        • ScoreThresholdStop
        • AsymptoticIndependenceTestStop
      • FPCA
      • FPLS
      • DiffusionMap
    • Feature construction
      • FDAFeatureUnion
      • PerClassTransformer
      • modified_epigraph_index
      • local_averages
      • occupation_measure
      • number_crossings
      • LocalAveragesTransformer
      • OccupationMeasureTransformer
      • NumberCrossingsTransformer
  • Exploratory analysis
    • Depth and outlyingness measures
      • Depth
      • IntegratedDepth
      • BandDepth
      • ModifiedBandDepth
      • DistanceBasedDepth
      • ProjectionDepth
      • SimplicialDepth
      • Outlyingness
      • StahelDonohoOutlyingness
      • OutlyingnessBasedDepth
    • Outlier detection
      • BoxplotOutlierDetector
      • MSPlotOutlierDetector
      • directional_outlyingness_stats
    • Summary statistics
      • mean
      • gmean
      • trim_mean
      • depth_based_median
      • geometric_median
      • fisher_rao_karcher_mean
      • cov
      • var
      • std
    • Visualization
      • GraphPlot
      • ScatterPlot
      • ParametricPlot
      • Boxplot
      • SurfaceBoxplot
      • Outliergram
      • DDPlot
      • MagnitudeShapePlot
      • ClusterPlot
      • ClusterMembershipLinesPlot
      • ClusterMembershipPlot
      • FPCAPlot
      • MixedDataPlot
  • Datasets
    • fetch_aemet
    • fetch_gait
    • fetch_growth
    • fetch_handwriting
    • fetch_mco
    • fetch_medflies
    • fetch_nox
    • fetch_octane
    • fetch_phoneme
    • fetch_tecator
    • fetch_weather
    • fetch_bone_density
    • fetch_cran
    • fetch_ucr
    • make_gaussian
    • make_gaussian_process
    • make_sinusoidal_process
    • make_multimodal_samples
    • make_multimodal_landmarks
    • make_random_warping
    • make_sde_trajectories
  • Miscellaneous
    • inner_product
    • inner_product_matrix
    • cosine_similarity
    • cosine_similarity_matrix
    • Covariance functions
      • Brownian
      • Covariance
      • Exponential
      • Gaussian
      • Linear
      • Polynomial
      • Matern
      • WhiteNoise
    • Metrics
      • LpNorm
      • LpDistance
      • lp_norm
      • lp_distance
      • angular_distance
      • fisher_rao_distance
      • fisher_rao_amplitude_distance
      • fisher_rao_phase_distance
      • MahalanobisDistance
      • NormInducedMetric
      • PairwiseMetric
      • TransformationMetric
    • Operators
      • Identity
      • LinearDifferentialOperator
      • SRSF
    • Regularization
      • L2Regularization
    • Hat Matrix
      • HatMatrix
      • NadarayaWatsonHatMatrix
      • LocalLinearRegressionHatMatrix
      • KNeighborsHatMatrix
    • Scoring methods for regression with functional response.
      • explained_variance_score
      • mean_absolute_error
      • mean_absolute_percentage_error
      • mean_squared_error
      • mean_squared_log_error
      • r2_score
      • root_mean_squared_error
      • root_mean_squared_log_error
  • Machine Learning
    • Classification
      • KNeighborsClassifier
      • RadiusNeighborsClassifier
      • NearestCentroid
      • DTMClassifier
      • MaximumDepthClassifier
      • DDClassifier
      • DDGClassifier
      • LogisticRegression
      • QuadraticDiscriminantAnalysis
    • Clustering
      • KMeans
      • FuzzyCMeans
      • NearestNeighbors
      • AgglomerativeClustering
    • Regression
      • LinearRegression
      • HistoricalLinearRegression
      • KNeighborsRegressor
      • RadiusNeighborsRegressor
      • KernelRegression
      • FPCARegression
      • FPLSRegression
  • Inference
    • ANOVA
      • oneway_anova
      • v_sample_stat
      • v_asymptotic_stat
    • Hotelling
      • hotelling_t2
      • hotelling_test_ind
  • API Reference
  • Miscellaneous
  • Operators

Operators#

This module contains several useful operators that can be applied to functional data, and sometimes to multivariate data.

The operators that are linear can also be used in the context of Regularization.

skfda.misc.operators.Identity(*args, **kwargs)

Identity operator.

skfda.misc.operators.LinearDifferentialOperator([...])

Defines the structure of a linear differential operator function system.

skfda.misc.operators.SRSF(*[, ...])

Square-Root Slope Function (SRSF) transform.

previous

TransformationMetric

next

Identity

Edit on GitHub

This Page

  • Show Source

© Copyright 2019, Grupo de Aprendizaje Automático - Universidad Autónoma de Madrid.

Created using Sphinx 8.2.3.

Built with the PyData Sphinx Theme 0.16.1.